Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge 3 | Moving on to Tasks
Data Preprocessing

Sveip for å vise menyen

book
Challenge 3

Oppgave

Swipe to start coding

The last task we have prepared for you is the implementation of feature engineering. You will be working with the 'sales_data.csv' dataset, and your task will be to create new variables and process categorical and numeric data.

  1. Use feature engineering to create new columns such as year, month, and day of the week Date
  2. Encode the 'Region' and 'Product; categorical columns with the ohe-hot encoding method
  3. For numeric data ('Sales'), you will need to scale the data

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 6. Kapittel 3

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Challenge 3

Oppgave

Swipe to start coding

The last task we have prepared for you is the implementation of feature engineering. You will be working with the 'sales_data.csv' dataset, and your task will be to create new variables and process categorical and numeric data.

  1. Use feature engineering to create new columns such as year, month, and day of the week Date
  2. Encode the 'Region' and 'Product; categorical columns with the ohe-hot encoding method
  3. For numeric data ('Sales'), you will need to scale the data

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 6. Kapittel 3
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt