Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Binomial probability 2/2 | Learn Basic Rules
Probability Theory

Sveip for å vise menyen

book
Binomial probability 2/2

Look at the code example of the binomial probability

12345
# Import relevant library from scipy.stats import binom # Here, we simulate an experiment of tossing 5 coins three times experiment = binom.rvs(p = 0.5, size = 5, n = 3) print(experiment)
copy

Explanation of the code above:

  1. We need to import binom object from scipy.stats.

  2. binom.rvs(p = 0.5, size = 5, n = 3) means that the probability of getting head is 50 %, p = 0.5; the size of sample in experiment is 5, size = 5; the number of trial is 3, n = 3.

  3. In the output we can see an array with five results for each coin with the number of successful trials for each coin.

Oppgave

Swipe to start coding

Your task here is almost the same as in the previous chapter, play with one coin!

Imagine that here you have a coin with a general probability of 50%. Follow this algorithm:

  1. Import the binom object from scipy.stats.

  2. Conduct the experiment with binom object using rvs() function:

    • Set p parameter equal to 0.5.
    • Set size parameter equal to 1.
    • Set n parameter equal to 5.

Please note, you can comment on the line where np.random.seed() was defined and "play with the coin" to receive various outputs.

Løsning

Note

Explanation of the output : We were tossing one coin five times, and it only led to success in three cases.

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 5
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Binomial probability 2/2

Look at the code example of the binomial probability

12345
# Import relevant library from scipy.stats import binom # Here, we simulate an experiment of tossing 5 coins three times experiment = binom.rvs(p = 0.5, size = 5, n = 3) print(experiment)
copy

Explanation of the code above:

  1. We need to import binom object from scipy.stats.

  2. binom.rvs(p = 0.5, size = 5, n = 3) means that the probability of getting head is 50 %, p = 0.5; the size of sample in experiment is 5, size = 5; the number of trial is 3, n = 3.

  3. In the output we can see an array with five results for each coin with the number of successful trials for each coin.

Oppgave

Swipe to start coding

Your task here is almost the same as in the previous chapter, play with one coin!

Imagine that here you have a coin with a general probability of 50%. Follow this algorithm:

  1. Import the binom object from scipy.stats.

  2. Conduct the experiment with binom object using rvs() function:

    • Set p parameter equal to 0.5.
    • Set size parameter equal to 1.
    • Set n parameter equal to 5.

Please note, you can comment on the line where np.random.seed() was defined and "play with the coin" to receive various outputs.

Løsning

Note

Explanation of the output : We were tossing one coin five times, and it only led to success in three cases.

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 5
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt