Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Solving the Task Using Geometric Probability | Basic Concepts of Probability Theory
Probability Theory Basics

Sveip for å vise menyen

book
Challenge: Solving the Task Using Geometric Probability

Consider a square with a side length of 2 units centered at the origin (0, 0) in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1 unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.

Oppgave

Swipe to start coding

Calculate probability as the ratio between the blue area and the whole area of the square.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Challenge: Solving the Task Using Geometric Probability

Consider a square with a side length of 2 units centered at the origin (0, 0) in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1 unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.

Oppgave

Swipe to start coding

Calculate probability as the ratio between the blue area and the whole area of the square.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt