Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: L2 Normalization and Norm Comparison | Normalization Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: L2 Normalization and Norm Comparison

Oppgave

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain this in simpler terms?

What are the next steps I should take?

Can you provide an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: L2 Normalization and Norm Comparison

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

some-alt