Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Whitening via Eigenvalue Decomposition | Whitening and Decorrelation
Feature Scaling and Normalization Deep Dive

bookChallenge: Whitening via Eigenvalue Decomposition

Oppgave

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Whitening via Eigenvalue Decomposition

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

some-alt