Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Build a Preprocessing Pipeline | Choosing and Evaluating Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: Build a Preprocessing Pipeline

Oppgave

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Build a Preprocessing Pipeline

Sveip for å vise menyen

Oppgave

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3
single

single

some-alt