Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Transformation Grid | Section
Data Preprocessing and Feature Engineering

bookChallenge: Transformation Grid

Oppgave

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your goal is to perform data transformation using pandas and scikit-learn.

Perform the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Fill missing values in age and embarked (mean and mode).
  3. Encode the categorical columns sex and embarked using pd.get_dummies() (drop the first category to avoid redundancy).
  4. Scale the numeric columns age and fare using StandardScaler.
  5. Create a new column family_size = sibsp + parch + 1.
  6. Return the transformed dataset as transformed_data.

Print .head() to preview the result.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 8
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

bookChallenge: Transformation Grid

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your goal is to perform data transformation using pandas and scikit-learn.

Perform the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Fill missing values in age and embarked (mean and mode).
  3. Encode the categorical columns sex and embarked using pd.get_dummies() (drop the first category to avoid redundancy).
  4. Scale the numeric columns age and fare using StandardScaler.
  5. Create a new column family_size = sibsp + parch + 1.
  6. Return the transformed dataset as transformed_data.

Print .head() to preview the result.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 8
single

single

some-alt