Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Try to Evaluate | Multivariate Linear Regression
Explore the Linear Regression Using Python
course content

Kursinnhold

Explore the Linear Regression Using Python

Explore the Linear Regression Using Python

1. What is the Linear Regression?
2. Correlation
3. Building and Training Model
4. Metrics to Evaluate the Model
5. Multivariate Linear Regression

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy
python

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy
python

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy
python

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Oppgave

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 2
toggle bottom row

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy
python

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy
python

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy
python

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Oppgave

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 2
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt