Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Prediction | Building and Training Model
Explore the Linear Regression Using Python

Sveip for å vise menyen

book
Prediction

Once we've trained our module, it's time to think about test data evaluation and future predictions. We can make predictions using the method predict().

Let's look at an example. Prediction for flavanoids when the number of total phenols is 1:

12
new_total_phenols = np.array([1]).reshape(-1,1) print(model.predict(new_total_phenols))
copy
python

Method .reshape() gives a new shape to an array without changing its data. Input must be a 2-dimension (DataFrame or 2-dimension array will work here).

This value is the same as if we had substituted the line b + kx, where b is the estimated intersection with the model, and k is the slope. Please note that we multiply by 1 since the number of total phenols is 1 (x = 1).

1
prediction = model.intercept_ + model.coef_*1
copy

We can also put our testing data to get predictions for all amounts of flavanoids:

1
y_test_predicted = model.predict(X_test)
copy
Oppgave

Swipe to start coding

Predict with the previous split-train data the amount of flavanoids if the total phenols is 2.

  1. [Line #6] Import the numpy library.
  2. [Line #26] Initialize the linear regression model.
  3. [Line #30] Assign np.array() and number of total phenols as the parameter (2) to the variable new_total_phenols (don’t forget to use the function .reshape(-1,1)).
  4. [Line #31] Predict amount of flavanoids
  5. [Line #32] Print the predicted amount of flavanoids.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 3
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Prediction

Once we've trained our module, it's time to think about test data evaluation and future predictions. We can make predictions using the method predict().

Let's look at an example. Prediction for flavanoids when the number of total phenols is 1:

12
new_total_phenols = np.array([1]).reshape(-1,1) print(model.predict(new_total_phenols))
copy
python

Method .reshape() gives a new shape to an array without changing its data. Input must be a 2-dimension (DataFrame or 2-dimension array will work here).

This value is the same as if we had substituted the line b + kx, where b is the estimated intersection with the model, and k is the slope. Please note that we multiply by 1 since the number of total phenols is 1 (x = 1).

1
prediction = model.intercept_ + model.coef_*1
copy

We can also put our testing data to get predictions for all amounts of flavanoids:

1
y_test_predicted = model.predict(X_test)
copy
Oppgave

Swipe to start coding

Predict with the previous split-train data the amount of flavanoids if the total phenols is 2.

  1. [Line #6] Import the numpy library.
  2. [Line #26] Initialize the linear regression model.
  3. [Line #30] Assign np.array() and number of total phenols as the parameter (2) to the variable new_total_phenols (don’t forget to use the function .reshape(-1,1)).
  4. [Line #31] Predict amount of flavanoids
  5. [Line #32] Print the predicted amount of flavanoids.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 3
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt