Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: ODE Solver Accuracy and Stability | Differential Equations and Dynamic Systems
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: ODE Solver Accuracy and Stability

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Oppgave

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

bookChallenge: ODE Solver Accuracy and Stability

Sveip for å vise menyen

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Oppgave

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

some-alt