Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Regression Metrics | Regression Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Regression Metrics

Oppgave

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Regression Metrics

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

some-alt