Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Unsupervised Metrics | Unsupervised Learning Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Unsupervised Metrics

Oppgave

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 5
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Unsupervised Metrics

Sveip for å vise menyen

Oppgave

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 5
single

single

some-alt