Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Apply Validation Rules to Employee Records | Data Quality Essentials
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Working with Text, Dates, and Data Cleaning in R

bookChallenge: Apply Validation Rules to Employee Records

Taak

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

bookChallenge: Apply Validation Rules to Employee Records

Veeg om het menu te tonen

Taak

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6
single

single

some-alt