Challenge: LOF in Practice
Swipe to start coding
You are given a 2D dataset with clusters and some outliers.
Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).
Steps:
- Import and initialize
LocalOutlierFactorwithn_neighbors=20,contamination=0.1. - Fit the model on
Xand obtain predictions via.fit_predict(X). - Extract negative outlier factor values (
model.negative_outlier_factor_). - Print the number of detected outliers and example scores.
Remember:
-1= outlier;1= inlier.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Can you explain that in simpler terms?
What are the main benefits of this approach?
Are there any common mistakes to avoid with this?
Awesome!
Completion rate improved to 4.55
Challenge: LOF in Practice
Veeg om het menu te tonen
Swipe to start coding
You are given a 2D dataset with clusters and some outliers.
Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).
Steps:
- Import and initialize
LocalOutlierFactorwithn_neighbors=20,contamination=0.1. - Fit the model on
Xand obtain predictions via.fit_predict(X). - Extract negative outlier factor values (
model.negative_outlier_factor_). - Print the number of detected outliers and example scores.
Remember:
-1= outlier;1= inlier.
Oplossing
Bedankt voor je feedback!
single