Challenge: Mahalanobis Distance in Practice
Swipe to start coding
You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.
Steps:
- Compute the mean vector of the dataset.
- Compute the covariance matrix and its inverse.
- For each observation, compute Mahalanobis distance using the formula:
[
D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}
]
4. Store all distances in an array distances.
5. Classify points as outliers if distance > threshold (use threshold = 2.5).
6. Print both arrays (distances and outliers) for verification.
Use NumPy only.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Can you explain this in simpler terms?
What are the main takeaways from this?
Can you give me a real-world example?
Geweldig!
Completion tarief verbeterd naar 4.55
Challenge: Mahalanobis Distance in Practice
Veeg om het menu te tonen
Swipe to start coding
You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.
Steps:
- Compute the mean vector of the dataset.
- Compute the covariance matrix and its inverse.
- For each observation, compute Mahalanobis distance using the formula:
[
D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}
]
4. Store all distances in an array distances.
5. Classify points as outliers if distance > threshold (use threshold = 2.5).
6. Print both arrays (distances and outliers) for verification.
Use NumPy only.
Oplossing
Bedankt voor je feedback!
single