Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Comparing the Dynamics | K-Medoids Algorithm
Cluster Analysis in Python
course content

Cursusinhoud

Cluster Analysis in Python

Cluster Analysis in Python

1. K-Means Algorithm
2. K-Medoids Algorithm
3. Hierarchical Clustering
4. Spectral Clustering

book
Comparing the Dynamics

That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.

Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.

Taak

Swipe to start coding

Visualize the monthly temperature dynamics across clusters. Follow the next steps:

  1. Import KMedoids function from sklearn_extra.cluster.
  2. Create a KMedoids object named model with 4 clusters.
  3. Fit the 3-15 columns (these are not indices, but positions) of data to model.
  4. Add the 'prediction' column to data with predicted by model labels.
  5. Calculate the monthly averages using data and save the result within the d DataFrame:
  • Group the observations by the 'prediction' column.
  • Calculate the mean values.
  • Stack the columns into indices (already done).
  • Reset the indices.
  1. Assign ['Group', 'Month', 'Temp'] as columns names of d.
  2. Build lineplot with 'Month' on the x-axis, 'Temp' on the y-axis for each 'Group' of d DataFrame (i.e. separate line and color for each 'Group').

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
toggle bottom row

book
Comparing the Dynamics

That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.

Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.

Taak

Swipe to start coding

Visualize the monthly temperature dynamics across clusters. Follow the next steps:

  1. Import KMedoids function from sklearn_extra.cluster.
  2. Create a KMedoids object named model with 4 clusters.
  3. Fit the 3-15 columns (these are not indices, but positions) of data to model.
  4. Add the 'prediction' column to data with predicted by model labels.
  5. Calculate the monthly averages using data and save the result within the d DataFrame:
  • Group the observations by the 'prediction' column.
  • Calculate the mean values.
  • Stack the columns into indices (already done).
  • Reset the indices.
  1. Assign ['Group', 'Month', 'Temp'] as columns names of d.
  2. Build lineplot with 'Month' on the x-axis, 'Temp' on the y-axis for each 'Group' of d DataFrame (i.e. separate line and color for each 'Group').

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt