Challenge: Using DBSCAN Clustering to Detect Outliers
Taak
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 3. Hoofdstuk 2
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 6.67
Challenge: Using DBSCAN Clustering to Detect Outliers
Veeg om het menu te tonen
Taak
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Awesome!
Completion rate improved to 6.67Sectie 3. Hoofdstuk 2
single