Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Simple Solution for Scraping | Tables
Web Scraping with Python
course content

Cursusinhoud

Web Scraping with Python

Web Scraping with Python

1. HTML Files and DevTools
2. Beautiful Soup
3. CSS Selectors/XPaths
4. Tables

book
Simple Solution for Scraping

The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
copy

In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.

With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
copy
Taak

Swipe to start coding

Get the table from the Wikipedia page about Florida and convert it to the DataFrame.

  1. Import pandas library with the pd alias.
  2. Get the table 'Largest cities or towns in Florida' from the page.
  3. Print the DataFrame df.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
toggle bottom row

book
Simple Solution for Scraping

The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
copy

In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.

With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:

12
import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
copy
Taak

Swipe to start coding

Get the table from the Wikipedia page about Florida and convert it to the DataFrame.

  1. Import pandas library with the pd alias.
  2. Get the table 'Largest cities or towns in Florida' from the page.
  3. Print the DataFrame df.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt