Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Drop Rows with Missing Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Drop Rows with Missing Data

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Taak

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Drop Rows with Missing Data

Veeg om het menu te tonen

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Taak

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

some-alt