Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Convert Data Types | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Convert Data Types

Ensuring that each column in your dataset has the correct data type is fundamental for accurate analysis and computation. When columns meant to represent numbers are stored as strings, calculations and statistical operations may fail or produce incorrect results. This is especially common when importing data from CSV files, spreadsheets, or external sources, where values such as numbers or dates are sometimes interpreted as text. Converting these columns to their appropriate data types ensures that you can perform mathematical operations, aggregations, and visualizations without unexpected errors or misleading outcomes.

12345678910111213
import pandas as pd # Sample data where the 'price' and 'quantity' columns are stored as strings data = { 'item': ['apple', 'banana', 'orange'], 'price': ['1.20', '0.80', '1.00'], 'quantity': ['10', '25', '15'] } df = pd.DataFrame(data) print(df) print(df.dtypes)
copy
Taak

Swipe to start coding

Write a function that converts the values in a specified column of a DataFrame to float type.
The function must:

  • Take a DataFrame and a column name as arguments.
  • Convert all values in the specified column to float type.
  • Return the converted column.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

How can I convert the 'price' and 'quantity' columns to numeric types?

Why is it important to check the data types after loading a dataset?

Can you explain what might go wrong if I don't convert these columns to the correct types?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Convert Data Types

Veeg om het menu te tonen

Ensuring that each column in your dataset has the correct data type is fundamental for accurate analysis and computation. When columns meant to represent numbers are stored as strings, calculations and statistical operations may fail or produce incorrect results. This is especially common when importing data from CSV files, spreadsheets, or external sources, where values such as numbers or dates are sometimes interpreted as text. Converting these columns to their appropriate data types ensures that you can perform mathematical operations, aggregations, and visualizations without unexpected errors or misleading outcomes.

12345678910111213
import pandas as pd # Sample data where the 'price' and 'quantity' columns are stored as strings data = { 'item': ['apple', 'banana', 'orange'], 'price': ['1.20', '0.80', '1.00'], 'quantity': ['10', '25', '15'] } df = pd.DataFrame(data) print(df) print(df.dtypes)
copy
Taak

Swipe to start coding

Write a function that converts the values in a specified column of a DataFrame to float type.
The function must:

  • Take a DataFrame and a column name as arguments.
  • Convert all values in the specified column to float type.
  • Return the converted column.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 4
single

single

some-alt