Challenge: Implement Particle Swarm Optimization
Swipe to start coding
You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].
All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.
Your task is to fill in the main iterative process:
- Inside the inner
forloop (for each particlei), you must first update the particle's velocity. Use the full PSO velocity update equation:w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]). - Update the particle's position by adding its new
velocities[i]topositions[i]. - After calculating the new
valueatpositions[i], check if this newvalueis better than the particle's personal best (pbest_values[i]). If it is, you must update bothpbest_positions[i]andpbest_values[i]. - After the inner loop (which updates all particles), check if the new best personal value (which you find and store in
min_value) is better than the current global best (gbest_value). If it is, update bothgbest_valueandgbest_position.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Can you explain this in simpler terms?
What are some examples related to this topic?
How does this information apply to real-life situations?
Awesome!
Completion rate improved to 6.25
Challenge: Implement Particle Swarm Optimization
Veeg om het menu te tonen
Swipe to start coding
You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].
All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.
Your task is to fill in the main iterative process:
- Inside the inner
forloop (for each particlei), you must first update the particle's velocity. Use the full PSO velocity update equation:w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]). - Update the particle's position by adding its new
velocities[i]topositions[i]. - After calculating the new
valueatpositions[i], check if this newvalueis better than the particle's personal best (pbest_values[i]). If it is, you must update bothpbest_positions[i]andpbest_values[i]. - After the inner loop (which updates all particles), check if the new best personal value (which you find and store in
min_value) is better than the current global best (gbest_value). If it is, update bothgbest_valueandgbest_position.
Oplossing
Bedankt voor je feedback!
single