Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Identify Outlier Test Durations | Analyzing and Visualizing Test Data
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for QA Engineers

bookChallenge: Identify Outlier Test Durations

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Taak

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 7
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you show me the sample DataFrame structure for the test cases?

How do I use seaborn to visualize outliers among failed tests?

What steps should I follow to highlight outliers in the plot?

close

bookChallenge: Identify Outlier Test Durations

Veeg om het menu te tonen

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Taak

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 7
single

single

some-alt