Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Parallel Image Processing | Advanced Patterns and Best Practices
Quizzes & Challenges
Quizzes
Challenges
/
Python Multithreading and Multiprocessing

bookChallenge: Parallel Image Processing

Imagine you are building a tool to automate the processing of a large collection of images. Your goal is to apply a transformation—such as resizing each image to a standard dimension or applying a simple filter—across all files in a directory. Processing each image one by one would be slow, especially with hundreds or thousands of files. By leveraging multiprocessing, you can process many images at once, dramatically reducing the total time required. This approach is especially useful for tasks like preparing image datasets for machine learning or batch editing photographs.

Taak

Swipe to start coding

Implement a function to process a list of image file paths in parallel using a process pool.

  • Use the concurrent.futures module's ProcessPoolExecutor to execute the process_func on each image path in the image_paths list.
  • Collect the results into a list and return it.
  • Use the num_workers parameter to set the number of processes in the pool.
  • Call the process_images_parallel function with a sample list of image paths, a simple processing function (such as returning the file name in uppercase), and a specified number of workers. Print the result using the following template:
    • print(result)

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Parallel Image Processing

Veeg om het menu te tonen

Imagine you are building a tool to automate the processing of a large collection of images. Your goal is to apply a transformation—such as resizing each image to a standard dimension or applying a simple filter—across all files in a directory. Processing each image one by one would be slow, especially with hundreds or thousands of files. By leveraging multiprocessing, you can process many images at once, dramatically reducing the total time required. This approach is especially useful for tasks like preparing image datasets for machine learning or batch editing photographs.

Taak

Swipe to start coding

Implement a function to process a list of image file paths in parallel using a process pool.

  • Use the concurrent.futures module's ProcessPoolExecutor to execute the process_func on each image path in the image_paths list.
  • Collect the results into a list and return it.
  • Use the num_workers parameter to set the number of processes in the pool.
  • Call the process_images_parallel function with a sample list of image paths, a simple processing function (such as returning the file name in uppercase), and a specified number of workers. Print the result using the following template:
    • print(result)

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

some-alt