Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Building Linear Regression Using Statsmodels | Section
Practice
Projects
Quizzes & Challenges
Quizzen
Challenges
/
Regression with Python

bookBuilding Linear Regression Using Statsmodels

Building a Linear Regression Model

In statsmodels, the OLS class can be used to create a linear regression model.

We first need to initialize an OLS class object using sm.OLS(y, X_tilde). Then train it using the fit() method.

model = sm.OLS(y, X_tilde)
model = model.fit()

Which is equivalent to:

model = sm.OLS(y, X_tilde).fit()
Note
Note

The constructor of the OLS class expects a specific array X_tilde as an input, which we saw in the Normal Equation. So you need to convert your X array to X_tilde. This is achievable using the sm.add_constant() function.

Finding Parameters

When the model is trained, you can easily access the parameters using the params attribute.

123456789
import statsmodels.api as sm import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv') X, y = df['Father'], df['Height'] X_tilde = sm.add_constant(X) model = sm.OLS(y, X_tilde).fit() beta_0, beta_1 = model.params print(beta_0, beta_1)
copy

Making the Predictions

New instances can easily be predicted using predict() method, but you need to preprocess the input for them too:

12345
import numpy as np X_new = np.array([65, 70, 75]) X_new_tilde = sm.add_constant(X_new) print(model.predict(X_new_tilde))
copy

Getting the Summary

As you probably noticed, using the OLS class is not as easy as the polyfit() function. But using OLS has its benefits. While training, it calculates a lot of statistical information. You can access the information using the summary() method.

1
print(model.summary())
copy

That's a lot of statistics. We will discuss the table's most important parts in later sections.

question mark

Choose the INCORRECT statement.

Select the correct answer

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

bookBuilding Linear Regression Using Statsmodels

Veeg om het menu te tonen

Building a Linear Regression Model

In statsmodels, the OLS class can be used to create a linear regression model.

We first need to initialize an OLS class object using sm.OLS(y, X_tilde). Then train it using the fit() method.

model = sm.OLS(y, X_tilde)
model = model.fit()

Which is equivalent to:

model = sm.OLS(y, X_tilde).fit()
Note
Note

The constructor of the OLS class expects a specific array X_tilde as an input, which we saw in the Normal Equation. So you need to convert your X array to X_tilde. This is achievable using the sm.add_constant() function.

Finding Parameters

When the model is trained, you can easily access the parameters using the params attribute.

123456789
import statsmodels.api as sm import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv') X, y = df['Father'], df['Height'] X_tilde = sm.add_constant(X) model = sm.OLS(y, X_tilde).fit() beta_0, beta_1 = model.params print(beta_0, beta_1)
copy

Making the Predictions

New instances can easily be predicted using predict() method, but you need to preprocess the input for them too:

12345
import numpy as np X_new = np.array([65, 70, 75]) X_new_tilde = sm.add_constant(X_new) print(model.predict(X_new_tilde))
copy

Getting the Summary

As you probably noticed, using the OLS class is not as easy as the polyfit() function. But using OLS has its benefits. While training, it calculates a lot of statistical information. You can access the information using the summary() method.

1
print(model.summary())
copy

That's a lot of statistics. We will discuss the table's most important parts in later sections.

question mark

Choose the INCORRECT statement.

Select the correct answer

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
some-alt