Challenge: Evaluating the Model
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Geweldig!
Completion tarief verbeterd naar 6.67
Challenge: Evaluating the Model
Veeg om het menu te tonen
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Oplossing
Bedankt voor je feedback!
single