Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Cluster a Compound Library | Similarity, Clustering and Drug Discovery
Python for Chemoinformatics

bookChallenge: Cluster a Compound Library

Taak

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Cluster a Compound Library

Veeg om het menu te tonen

Taak

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

some-alt