Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Build a Simple QSAR Model | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Build a Simple QSAR Model

Taak

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you give me an example?

close

bookChallenge: Build a Simple QSAR Model

Veeg om het menu te tonen

Taak

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

some-alt