Challenge: Compose a Data Pipeline
Taak
Swipe to start coding
You are building a scikit-learn data pipeline that keeps preprocessing and modeling in a single reusable object.
- Create a
ColumnTransformernamedpreprocessor:- For numeric columns, use
SimpleImputer(strategy="mean"); - For categorical columns, use
OneHotEncoder(sparse_output=False, handle_unknown="ignore").
- For numeric columns, use
- Create a
Pipelinenamedpipelinewith two steps:"preprocessor": thepreprocessor;"model": aLogisticRegressionestimator withrandom_state=42.
- Fit
pipelineusingX_trainandy_train. - Predict labels for
X_testand store them iny_pred.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 3. Hoofdstuk 4
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Suggested prompts:
Can you explain this in simpler terms?
What are the main benefits or drawbacks?
Can you give me a real-world example?
Geweldig!
Completion tarief verbeterd naar 5.26
Challenge: Compose a Data Pipeline
Veeg om het menu te tonen
Taak
Swipe to start coding
You are building a scikit-learn data pipeline that keeps preprocessing and modeling in a single reusable object.
- Create a
ColumnTransformernamedpreprocessor:- For numeric columns, use
SimpleImputer(strategy="mean"); - For categorical columns, use
OneHotEncoder(sparse_output=False, handle_unknown="ignore").
- For numeric columns, use
- Create a
Pipelinenamedpipelinewith two steps:"preprocessor": thepreprocessor;"model": aLogisticRegressionestimator withrandom_state=42.
- Fit
pipelineusingX_trainandy_train. - Predict labels for
X_testand store them iny_pred.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 3. Hoofdstuk 4
single