FacetGrid
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.







import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
df = pd.read_csv('filename.csv')
# Creating the FacetGrid variable
g = sns.FacetGrid(df, col = 'column_name', row = 'row_name')
# The main approach for visualizing data on this grid is with the FacetGrid.map() method
g.map(sns.scatterplot, 'column_name')
plt.show()
Swipe to start coding
-
Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. -
Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 4.35Awesome!
Completion rate improved to 4.35
FacetGrid
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.







import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
df = pd.read_csv('filename.csv')
# Creating the FacetGrid variable
g = sns.FacetGrid(df, col = 'column_name', row = 'row_name')
# The main approach for visualizing data on this grid is with the FacetGrid.map() method
g.map(sns.scatterplot, 'column_name')
plt.show()
Swipe to start coding
-
Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. -
Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Oplossing
Bedankt voor je feedback!
single
Awesome!
Completion rate improved to 4.35
FacetGrid
Veeg om het menu te tonen
The time to learn the cool plots we were talking about!
A useful approach to exploring medium-dimensional data is by drawing multiple instances of the same plot on different subsets of your dataset.
FacetGrid
object takes a DataFrame as input and the names of the variables that will form the grid's row, column, or hue dimensions. The variables should be categorical, and the data at each level of the variable will be used for a facet along that axis.







import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
df = pd.read_csv('filename.csv')
# Creating the FacetGrid variable
g = sns.FacetGrid(df, col = 'column_name', row = 'row_name')
# The main approach for visualizing data on this grid is with the FacetGrid.map() method
g.map(sns.scatterplot, 'column_name')
plt.show()
Swipe to start coding
-
Set the
'whitegrid'
style with the'cornsilk'
axes.facecolor
. -
Create a FacetGrid variable
g
:
- Set the data for the
FacetGrid
; - Set the
col
parameter equals the'day'
; - Set the
row
parameter equals the'smoker'
; - Set the
height
parameter equals3
.
Implement the .map()
function to build histplots:
- Create histplots;
- Set the
'olive'
color for the histplots; - Add the
kde
parameter; - Disable the
fill
parameter; - Set the
binwidth
equals4
; - Display the plot.
Oplossing
Bedankt voor je feedback!