Extracting Data from CSV and JSON Files
12345import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.
123456789101112import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
Bedankt voor je feedback!
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 6.67
Extracting Data from CSV and JSON Files
Veeg om het menu te tonen
12345import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.
123456789101112import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
Bedankt voor je feedback!