Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: SVD for Image Compression | Linear Algebra and Matrix Operations
Introduction to SciPy

bookChallenge: SVD for Image Compression

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Taak

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain how SVD is used for image compression in simple terms?

What are the steps to compress and reconstruct an image using SVD?

How do I choose the number of singular values to keep for good compression?

close

Awesome!

Completion rate improved to 4.17

bookChallenge: SVD for Image Compression

Veeg om het menu te tonen

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Taak

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

some-alt