Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Data Fitting in Practice | Optimization and Root Finding
Introduction to SciPy

bookChallenge: Data Fitting in Practice

Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.

Taak

Swipe to start coding

Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).

  • Use curve_fit to fit poly_model to the provided x_data and y_data.
  • Retrieve the fitted parameters from the result of curve_fit.
  • Return the parameters as a tuple (a, b, c).

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you walk me through how to use `scipy.optimize.curve_fit` for polynomial fitting?

What are the steps to prepare my data for curve fitting?

Can you explain how to interpret the results from `curve_fit`?

close

Awesome!

Completion rate improved to 4.17

bookChallenge: Data Fitting in Practice

Veeg om het menu te tonen

Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.

Taak

Swipe to start coding

Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).

  • Use curve_fit to fit poly_model to the provided x_data and y_data.
  • Retrieve the fitted parameters from the result of curve_fit.
  • Return the parameters as a tuple (a, b, c).

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6
single

single

some-alt