Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Prescription Frequency Analysis | Pharmaceutical Data Handling
Python for Pharmacists

bookChallenge: Prescription Frequency Analysis

In pharmacy practice, it is common to analyze prescription records to identify which medications are most frequently prescribed. Using pandas, you can group data by drug name and count the number of prescriptions for each medication, allowing you to quickly spot trends or high-demand drugs. By sorting these results, you can easily determine which drug tops the prescription list. This kind of data analysis is essential for inventory planning, formulary management, and understanding patient care patterns.

Taak

Swipe to start coding

Implement a function to analyze the frequency of prescriptions for each drug in a pandas DataFrame. The DataFrame will contain columns: Patient, Drug, and Date.

  • Group the DataFrame by the Drug column and count the number of prescriptions for each drug.
  • Sort the resulting summary table by prescription count in descending order.
  • Print the drug with the highest number of prescriptions.
  • Print the summary table showing each drug and its prescription count, sorted in descending order.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 7
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you show me an example of how to do this analysis in pandas?

What other insights can I get from prescription data?

How can I visualize the most prescribed drugs?

close

bookChallenge: Prescription Frequency Analysis

Veeg om het menu te tonen

In pharmacy practice, it is common to analyze prescription records to identify which medications are most frequently prescribed. Using pandas, you can group data by drug name and count the number of prescriptions for each medication, allowing you to quickly spot trends or high-demand drugs. By sorting these results, you can easily determine which drug tops the prescription list. This kind of data analysis is essential for inventory planning, formulary management, and understanding patient care patterns.

Taak

Swipe to start coding

Implement a function to analyze the frequency of prescriptions for each drug in a pandas DataFrame. The DataFrame will contain columns: Patient, Drug, and Date.

  • Group the DataFrame by the Drug column and count the number of prescriptions for each drug.
  • Sort the resulting summary table by prescription count in descending order.
  • Print the drug with the highest number of prescriptions.
  • Print the summary table showing each drug and its prescription count, sorted in descending order.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 7
single

single

some-alt