Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Solving Task Using Bagging Classifier | Commonly Used Bagging Models
Ensemble Learning

Veeg om het menu te tonen

book
Challenge: Solving Task Using Bagging Classifier

Taak

Swipe to start coding

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 2

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
Challenge: Solving Task Using Bagging Classifier

Taak

Swipe to start coding

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 2
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt