Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Determining Feature Importances Using Random Forest | Commonly Used Bagging Models
Ensemble Learning
course content

Cursusinhoud

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

book
Challenge: Determining Feature Importances Using Random Forest

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.
Taak

Swipe to start coding

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
toggle bottom row

book
Challenge: Determining Feature Importances Using Random Forest

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.
Taak

Swipe to start coding

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt