Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Service Uptime Analyzer | Data-Driven DevOps Decisions
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for DevOps Beginners

bookChallenge: Service Uptime Analyzer

In DevOps, maintaining high service uptime is a top priority, as even short outages can impact users and business operations. Being able to quickly analyze and identify servers that are underperforming helps you take proactive steps to ensure reliability. In this challenge, you will use your skills with pandas DataFrames to process and interpret service uptime data, making it easier to spot issues before they escalate.

Taak

Swipe to start coding

You need to implement a script that analyzes service uptime data for a set of servers and highlights any that fall below a specified threshold.

  • Create a pandas DataFrame from the provided list of dictionaries.
  • Calculate the average uptime across all servers.
  • Identify servers with uptime less than the threshold.
  • Print the average uptime and a list of underperforming servers, or indicate if all meet the threshold.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

What kind of uptime data will I be working with?

Can you explain how pandas DataFrames can help analyze uptime?

What are some common indicators of underperforming servers?

close

bookChallenge: Service Uptime Analyzer

Veeg om het menu te tonen

In DevOps, maintaining high service uptime is a top priority, as even short outages can impact users and business operations. Being able to quickly analyze and identify servers that are underperforming helps you take proactive steps to ensure reliability. In this challenge, you will use your skills with pandas DataFrames to process and interpret service uptime data, making it easier to spot issues before they escalate.

Taak

Swipe to start coding

You need to implement a script that analyzes service uptime data for a set of servers and highlights any that fall below a specified threshold.

  • Create a pandas DataFrame from the provided list of dictionaries.
  • Calculate the average uptime across all servers.
  • Identify servers with uptime less than the threshold.
  • Print the average uptime and a list of underperforming servers, or indicate if all meet the threshold.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 3
single

single

some-alt