Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Incident Frequency Visualizer | Data-Driven DevOps Decisions
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for DevOps Beginners

bookChallenge: Incident Frequency Visualizer

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Taak

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 5
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Incident Frequency Visualizer

Veeg om het menu te tonen

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Taak

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 5
single

single

some-alt