Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Predict Student Scores Based on Study Hours | Probability, Statistics, and Simulation
Python for Mathematics

bookChallenge: Predict Student Scores Based on Study Hours

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Taak

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 7
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Predict Student Scores Based on Study Hours

Veeg om het menu te tonen

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Taak

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 7
single

single

some-alt