Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Model Evaluation | Logistic Regression Mastering
Logistic Regression Mastering
course content

Cursusinhoud

Logistic Regression Mastering

book
Model Evaluation

Now that we have trained our Logistic Regression algorithm, the next step is to assess the performance. We will compare the true y values with the predicted ones.

Methods description

  • sklearn.metrics: This module from scikit-learn (sklearn) contains various metrics for evaluating machine learning models. It provides functions to assess the performance of classification, regression, and clustering algorithms;

  • accuracy_score: This is a method within the metrics module used to calculate the accuracy of classification models. It compares the predicted labels (y_pred) with the true labels (y_test) and returns the ratio of correctly classified samples to the total number of samples. In other words, it measures the proportion of correctly predicted outcomes.

Taak

Swipe to start coding

  1. Import accuracy_score from sklearn.metrics.

  2. Pass y_test and y_pred to the scoring function.

Oplossing

Congratulations on building your first ML Pipeline. In this project, you have learned how to:

  1. Import your Data;
  2. Visually inspect it;
  3. Preprocess it (clean and impute it);
  4. Train and evaluate your ML algorithm.

Mark tasks as Completed
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 7
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt