Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Encoding Categorical Variables | Preprocessing Data with Scikit-learn
ML Introduction with scikit-learn

Veeg om het menu te tonen

book
Challenge: Encoding Categorical Variables

To summarize the previous three chapters, here is a table showing what encoder you should use:

In this challenge, you have the penguins dataset file (with no missing values). You need to deal with all the categorical values, including the target ('species' column).

Here is the reminder of the data you will work with:

12345
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed.csv') print(df.head())
copy

Keep in mind that 'island' and 'sex' are categorical features and 'species' is a categorical target.

Taak

Swipe to start coding

Encode all the categorical values. For this, you need to choose the correct encoder for the 'island', and 'sex' columns and follow the steps.

  1. Import OnehotEncoder and LabelEncoder.
  2. Initialize the features encoder object.
  3. Encode the categorical feature columns using the feature_enc object.
  4. Initialize the target encoder object.
  5. Encode the target using the label_enc object.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 8

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
Challenge: Encoding Categorical Variables

To summarize the previous three chapters, here is a table showing what encoder you should use:

In this challenge, you have the penguins dataset file (with no missing values). You need to deal with all the categorical values, including the target ('species' column).

Here is the reminder of the data you will work with:

12345
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed.csv') print(df.head())
copy

Keep in mind that 'island' and 'sex' are categorical features and 'species' is a categorical target.

Taak

Swipe to start coding

Encode all the categorical values. For this, you need to choose the correct encoder for the 'island', and 'sex' columns and follow the steps.

  1. Import OnehotEncoder and LabelEncoder.
  2. Initialize the features encoder object.
  3. Encode the categorical feature columns using the feature_enc object.
  4. Initialize the target encoder object.
  5. Encode the target using the label_enc object.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 8
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt