Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Churn Prediction Tool | Growth, Marketing, and Customer Insights
Python for Startup Founders

bookChallenge: Churn Prediction Tool

Churn prediction is a key application of data science in startups, enabling you to identify which customers are likely to leave and take proactive measures to retain them. By using machine learning models like logistic regression, you can analyze patterns in customer data and estimate the likelihood of churn. Equally important is understanding which features—such as usage frequency, account age, or support requests—most strongly influence the model's predictions. This knowledge empowers you to target interventions and optimize your product or service for customer retention.

Taak

Swipe to start coding

Build a churn prediction tool using logistic regression and scikit-learn.

  • Fit a logistic regression model to predict the churned label using the provided customer features.
  • Use the trained model to predict churn for the new_customers DataFrame.
  • Create a summary of feature importance for the churn prediction model, based on the absolute values of the model's coefficients.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 5
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Churn Prediction Tool

Veeg om het menu te tonen

Churn prediction is a key application of data science in startups, enabling you to identify which customers are likely to leave and take proactive measures to retain them. By using machine learning models like logistic regression, you can analyze patterns in customer data and estimate the likelihood of churn. Equally important is understanding which features—such as usage frequency, account age, or support requests—most strongly influence the model's predictions. This knowledge empowers you to target interventions and optimize your product or service for customer retention.

Taak

Swipe to start coding

Build a churn prediction tool using logistic regression and scikit-learn.

  • Fit a logistic regression model to predict the churned label using the provided customer features.
  • Use the trained model to predict churn for the new_customers DataFrame.
  • Create a summary of feature importance for the churn prediction model, based on the absolute values of the model's coefficients.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 5
single

single

some-alt