Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Paired t-test | Statistical Testing
Learning Statistics with Python

Veeg om het menu te tonen

book
Paired t-test

The following function conducts a paired t-test:

python

This process resembles the one used for independent samples, but here we do not need to check the homogeneity of variance. The paired t-test explicitly does not assume that variances are equal.

Keep in mind that for a paired t-test, it's crucial that the sample sizes are equal.

With this information in mind, you can proceed to the task of conducting a paired t-test.

Here, you have data regarding the number of downloads for a particular app. Take a look at the samples: the mean values are nearly identical.

123456789101112
import pandas as pd import matplotlib.pyplot as plt # Read the data before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze() after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze() # Plot histograms plt.hist(before, alpha=0.7) plt.hist(after, alpha=0.7) # Plot the means plt.axvline(before.mean(), color='blue', linestyle='dashed') plt.axvline(after.mean(), color='gold', linestyle='dashed')
copy
Taak

Swipe to start coding

Hypotheses are established:

  • H₀: The mean number of downloads before and after the changes is the same;
  • Hₐ: The mean number of downloads is greater after the modifications.

Conduct a paired t-test with this alternative hypothesis, using before and after as the samples.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 6. Hoofdstuk 8

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
Paired t-test

The following function conducts a paired t-test:

python

This process resembles the one used for independent samples, but here we do not need to check the homogeneity of variance. The paired t-test explicitly does not assume that variances are equal.

Keep in mind that for a paired t-test, it's crucial that the sample sizes are equal.

With this information in mind, you can proceed to the task of conducting a paired t-test.

Here, you have data regarding the number of downloads for a particular app. Take a look at the samples: the mean values are nearly identical.

123456789101112
import pandas as pd import matplotlib.pyplot as plt # Read the data before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze() after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze() # Plot histograms plt.hist(before, alpha=0.7) plt.hist(after, alpha=0.7) # Plot the means plt.axvline(before.mean(), color='blue', linestyle='dashed') plt.axvline(after.mean(), color='gold', linestyle='dashed')
copy
Taak

Swipe to start coding

Hypotheses are established:

  • H₀: The mean number of downloads before and after the changes is the same;
  • Hₐ: The mean number of downloads is greater after the modifications.

Conduct a paired t-test with this alternative hypothesis, using before and after as the samples.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 6. Hoofdstuk 8
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt