Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Aggregate Batch Results | Data Manipulation and Analysis for Automation
Python for Automation Engineers

bookChallenge: Aggregate Batch Results

Analyzing and summarizing batch process results is a common task in automation, especially when you need to evaluate performance or quality across multiple runs. In this challenge, you will work with a hardcoded pandas DataFrame representing results from several batches. Your goal is to group the data by batch ID, calculate the mean and standard deviation for each batch, and present the findings in a summary DataFrame. This mirrors real-world scenarios where automation engineers need to quickly assess variability and trends across repeated processes.

Taak

Swipe to start coding

Given a DataFrame with batch process results, create a function that groups the results by batch ID and calculates summary statistics.

  • Group the df DataFrame by the "batch_id" column.
  • For each batch, calculate the mean of the "result" column.
  • For each batch, calculate the standard deviation of the "result" column.
  • Return a new DataFrame with "mean_result" and "std_result" columns, indexed by batch ID.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 5
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you show me the sample DataFrame we should use for this task?

What would the structure of the summary DataFrame look like?

Could you explain how to group by batch ID and calculate mean and standard deviation in pandas?

close

bookChallenge: Aggregate Batch Results

Veeg om het menu te tonen

Analyzing and summarizing batch process results is a common task in automation, especially when you need to evaluate performance or quality across multiple runs. In this challenge, you will work with a hardcoded pandas DataFrame representing results from several batches. Your goal is to group the data by batch ID, calculate the mean and standard deviation for each batch, and present the findings in a summary DataFrame. This mirrors real-world scenarios where automation engineers need to quickly assess variability and trends across repeated processes.

Taak

Swipe to start coding

Given a DataFrame with batch process results, create a function that groups the results by batch ID and calculates summary statistics.

  • Group the df DataFrame by the "batch_id" column.
  • For each batch, calculate the mean of the "result" column.
  • For each batch, calculate the standard deviation of the "result" column.
  • Return a new DataFrame with "mean_result" and "std_result" columns, indexed by batch ID.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 5
single

single

some-alt