Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Visualizing Automation Data | Data Manipulation and Analysis for Automation
Python for Automation Engineers

bookVisualizing Automation Data

Data visualization is a vital skill for automation engineers because it helps you quickly identify trends, patterns, and anomalies in your data. When monitoring devices or analyzing process logs, visualizing the data makes it easier to spot issues that might be missed in raw tables or text outputs. Charts and plots can turn complex datasets into clear, actionable insights, which is essential for troubleshooting, reporting, and optimizing automated systems.

1234567891011
import matplotlib.pyplot as plt # Example device readings over time time = ["08:00", "09:00", "10:00", "11:00", "12:00"] readings = [20, 22, 21, 23, 24] plt.plot(time, readings) plt.title("Device Readings Over Time") plt.xlabel("Time") plt.ylabel("Reading") plt.show()
copy

In the plot above, several elements help you interpret the data. The title ("Device Readings Over Time") describes the purpose of the chart. The x-axis label ("Time") and y-axis label ("Reading") clarify what each axis represents. These labels make your plots easier to understand at a glance. You can also add a legend if you are plotting multiple lines, which helps distinguish between different data series.

1234567891011121314
import matplotlib.pyplot as plt # Multiple device readings time = ["08:00", "09:00", "10:00", "11:00", "12:00"] device1 = [20, 22, 21, 23, 24] device2 = [19, 21, 20, 22, 23] plt.plot(time, device1, color="blue", marker="o", label="Device 1") plt.plot(time, device2, color="green", marker="s", label="Device 2") plt.title("Device Readings Comparison") plt.xlabel("Time") plt.ylabel("Reading") plt.legend() plt.show()
copy

1. What is matplotlib used for in Python?

2. Why visualize automation data?

3. Fill in the blank to add markers to the plot using matplotlib.

question mark

What is matplotlib used for in Python?

Select the correct answer

question mark

Why visualize automation data?

Select all correct answers

question-icon

Fill in the blank to add markers to the plot using matplotlib.

="o")

Click or drag`n`drop items and fill in the blanks

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain how to customize the appearance of the plot further?

What does the legend do in this example?

How can I add more devices to the comparison chart?

bookVisualizing Automation Data

Veeg om het menu te tonen

Data visualization is a vital skill for automation engineers because it helps you quickly identify trends, patterns, and anomalies in your data. When monitoring devices or analyzing process logs, visualizing the data makes it easier to spot issues that might be missed in raw tables or text outputs. Charts and plots can turn complex datasets into clear, actionable insights, which is essential for troubleshooting, reporting, and optimizing automated systems.

1234567891011
import matplotlib.pyplot as plt # Example device readings over time time = ["08:00", "09:00", "10:00", "11:00", "12:00"] readings = [20, 22, 21, 23, 24] plt.plot(time, readings) plt.title("Device Readings Over Time") plt.xlabel("Time") plt.ylabel("Reading") plt.show()
copy

In the plot above, several elements help you interpret the data. The title ("Device Readings Over Time") describes the purpose of the chart. The x-axis label ("Time") and y-axis label ("Reading") clarify what each axis represents. These labels make your plots easier to understand at a glance. You can also add a legend if you are plotting multiple lines, which helps distinguish between different data series.

1234567891011121314
import matplotlib.pyplot as plt # Multiple device readings time = ["08:00", "09:00", "10:00", "11:00", "12:00"] device1 = [20, 22, 21, 23, 24] device2 = [19, 21, 20, 22, 23] plt.plot(time, device1, color="blue", marker="o", label="Device 1") plt.plot(time, device2, color="green", marker="s", label="Device 2") plt.title("Device Readings Comparison") plt.xlabel("Time") plt.ylabel("Reading") plt.legend() plt.show()
copy

1. What is matplotlib used for in Python?

2. Why visualize automation data?

3. Fill in the blank to add markers to the plot using matplotlib.

question mark

What is matplotlib used for in Python?

Select the correct answer

question mark

Why visualize automation data?

Select all correct answers

question-icon

Fill in the blank to add markers to the plot using matplotlib.

="o")

Click or drag`n`drop items and fill in the blanks

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
some-alt