Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Clean Sales Data | Business Data Manipulation
Python for Business Analysts

bookChallenge: Clean Sales Data

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Taak

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Clean Sales Data

Veeg om het menu te tonen

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Taak

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 3
single

single

some-alt