Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Parallel Algorithms | Advanced Concurrency Techniques
C++ Concurrency and Multithreading

bookParallel Algorithms

Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.

Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.

main.cpp

main.cpp

copy
1234567891011121314151617181920
#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }

Performance

Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.

Determinism

Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.

question mark

Which scenario is best suited for using a parallel algorithm like std::for_each with std::execution::par?

Select the correct answer

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 3

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

bookParallel Algorithms

Veeg om het menu te tonen

Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.

Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.

main.cpp

main.cpp

copy
1234567891011121314151617181920
#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }

Performance

Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.

Determinism

Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.

question mark

Which scenario is best suited for using a parallel algorithm like std::for_each with std::execution::par?

Select the correct answer

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 3
some-alt