Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Preprocessing Pipeline | Section
Practice
Projects
Quizzes & Challenges
Quizzen
Challenges
/
Data Preprocessing and Feature Engineering

bookChallenge: Preprocessing Pipeline

Taak

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 12
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Preprocessing Pipeline

Veeg om het menu te tonen

Taak

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 12
single

single

some-alt