Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Data Cleaning | Section
Practice
Projects
Quizzes & Challenges
Quizzen
Challenges
/
Data Preprocessing and Feature Engineering

bookChallenge: Data Cleaning

Taak

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Data Cleaning

Veeg om het menu te tonen

Taak

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
single

single

some-alt