Stacked Bars
Stacked bar charts are popular in cases when we want to expand our vision to multiple categories. For example, in the previous task, we may compare two Indian cities by placing the second bar right above the first one. In this case, the bar height will be the sum of two bars values.
To build a stacked bar chart we need to call the .bar()
function as many times as many categories we consider. Each next .bar()
function should have a bottom
parameter with the y-axis values of the lower bar assigned. For example, let's represent countries' GDP by sector composition.
1234567891011121314151617181920# Import library import matplotlib.pyplot as plt # Create data for chart countries = ['United States', 'India', 'Brazil'] agricultural = [333600, 1458996, 214368] industrial = [3722590, 2179020, 672336] services = [15592000, 5826510, 2361296] # Create Axes and Figure objects fig, ax = plt.subplots() # Initialize bar chart ax.bar(countries, agricultural, label = 'Agricultural') ax.bar(countries, industrial, label = 'Industrial', bottom = agricultural) ax.bar(countries, services, label = 'Services', bottom = industrial) # Display the plot plt.legend() plt.show()
Bedankt voor je feedback!
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 2.94
Stacked Bars
Veeg om het menu te tonen
Stacked bar charts are popular in cases when we want to expand our vision to multiple categories. For example, in the previous task, we may compare two Indian cities by placing the second bar right above the first one. In this case, the bar height will be the sum of two bars values.
To build a stacked bar chart we need to call the .bar()
function as many times as many categories we consider. Each next .bar()
function should have a bottom
parameter with the y-axis values of the lower bar assigned. For example, let's represent countries' GDP by sector composition.
1234567891011121314151617181920# Import library import matplotlib.pyplot as plt # Create data for chart countries = ['United States', 'India', 'Brazil'] agricultural = [333600, 1458996, 214368] industrial = [3722590, 2179020, 672336] services = [15592000, 5826510, 2361296] # Create Axes and Figure objects fig, ax = plt.subplots() # Initialize bar chart ax.bar(countries, agricultural, label = 'Agricultural') ax.bar(countries, industrial, label = 'Industrial', bottom = agricultural) ax.bar(countries, services, label = 'Services', bottom = industrial) # Display the plot plt.legend() plt.show()
Bedankt voor je feedback!