Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Advanced Aggregation [1/2] | Aggregating and Visualizing Data
Data Manipulation using pandas

bookAdvanced Aggregation [1/2]

Sometimes one aggregate function is not enought to make complete conclusions. For instance, we may need to get not only minimal, but also maximal value per group. Can pandas handle it? Surely, it can!

If you want to apply more than one aggregate function to each group, use the .agg() method. Pass a list of function names (as strings!) you want to apply to each group as the parameter. For instance, we can get the minimal and maximal price for each value of the 'roomh' column (number of rooms).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data4.csv') # Minimal and maximal prices for each dwelling type print(df.groupby('roomh')['valueh'].agg(['min', 'max']))
copy

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 1

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Awesome!

Completion rate improved to 2.56

bookAdvanced Aggregation [1/2]

Veeg om het menu te tonen

Sometimes one aggregate function is not enought to make complete conclusions. For instance, we may need to get not only minimal, but also maximal value per group. Can pandas handle it? Surely, it can!

If you want to apply more than one aggregate function to each group, use the .agg() method. Pass a list of function names (as strings!) you want to apply to each group as the parameter. For instance, we can get the minimal and maximal price for each value of the 'roomh' column (number of rooms).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data4.csv') # Minimal and maximal prices for each dwelling type print(df.groupby('roomh')['valueh'].agg(['min', 'max']))
copy

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 1
some-alt